
Inexact Simplification of Symbolic Regression Expressions with
Locality-sensitive Hashing

Guilherme Seidyo Imai Aldeia
Federal University of ABC

Santo Andre, São Paulo, Brazil
guilherme.aldeia@ufabc.edu.br

Fabrício Olivetti de França
Federal University of ABC

Santo Andre, São Paulo, Brazil
folivetti@ufabc.edu.br

William G. La Cava
Boston Children’s Hospital
Harvard Medical School

Boston, Massachusetts, USA
william.lacava@childrens.harvard.edu

ABSTRACT
Symbolic regression (SR) searches for parametric models that ac-
curately fit a dataset, prioritizing simplicity and interpretability.
Despite this secondary objective, studies point out that the mod-
els are often overly complex due to redundant operations, introns,
and bloat that arise during the iterative process, and can hinder
the search with repeated exploration of bloated segments. Apply-
ing a fast heuristic algebraic simplification may not fully simplify
the expression and exact methods can be infeasible depending on
size or complexity of the expressions. We propose a novel agnos-
tic simplification and bloat control for SR employing an efficient
memoization with locality-sensitive hashing (LHS). The idea is that
expressions and their sub-expressions traversed during the itera-
tive simplification process are stored in a dictionary using LHS,
enabling efficient retrieval of similar structures. We iterate through
the expression, replacing subtrees with others of same hash if they
result in a smaller expression. Empirical results shows that applying
this simplification during evolution performs equal or better than
without simplification in minimization of error, significantly reduc-
ing the number of nonlinear functions. This technique can learn
simplification rules that work in general or for a specific problem,
and improves convergence while reducing model complexity.

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic algo-
rithms; • Mathematics of computing→ Genetic programming.

KEYWORDS
locality sensitive hashing, simplification, symbolic regression, ge-
netic programming

1 INTRODUCTION
Symbolic regression (SR) addresses the challenge of jointly opti-
mizing the parameters and structure of a function. Given a set of
𝑑-dimensional inputs X and target outputs y, it solves y ≈ ŷ =

𝑓 (X, 𝜃), typically by minimizing the difference between y and ŷ
while concurrently prioritizing simplicity [18]. Since first proposed
by Koza as an application of genetic programming (GP) [15], it has
been successfully used in several fields, such as clinical decision
support [20], financial modeling [24], aerospace engineering [17],
and physical sciences [3].

Despite its success, SR is an NP-hard problem [27], meaning
that searching for the best regression model is computationally
inefficient unless P=NP is proved. The search space is vast, con-
taining isomorphic mathematical expressions [5], introns (parts of

the model that do not influence predictions) [1], bloat (growth in
model size with unjustified improvement in loss) [23], and model
overparameterization (excessive number of parameters to tune) [9].
While these do not directly affect model accuracy, they can inflate
model size, decreasing simplicity and interpretability.

There are several different approaches in the literature for tack-
ling this problem, such as automatic simplification of models [12],
parametric rules to rewrite expressions [16], Bayesian loss metric
for model selection [4], constrained search space by restricting
model structure [8], or application of an exact simplification pro-
cedure such as equality saturation [9]. Although all of those have
their own benefits, they also have limitations, chiefly the additional
computational cost and the need to manually write the algebraic
simplification rules.

We propose a technique to dynamically build the simplification
rules to address these limitations by memoizing observed equiva-
lences with hashing. In short, we build a hash table where the key
is created using locality-sensitive hashing (LHS) [11] based on the
prediction vector, and the value is the smallest observed subtree cor-
responding to that vector. LHS is often used to efficiently retrieve
nearest-neighbor points in a database system [13]. By analogy, our
proposal transforms expressions into similar expressions within
the phenotype (i.e., behavior) space that are smaller.

When integrating and applying the simplification into every
expression throughout the generations, we observed benefits such
as faster convergence and reduced mean squared error. The size
of the returned expression remained the same, but its complexity
was significantly reduced when considering the use and chaining
of nonlinear functions. Furthermore, we analyzed the expressions
identified as equivalent and noticed that the algorithm successfully
captures many known algebraic identities.

The paper is organized as follows. Section 2 provides an overview
of related work in bloat control, hashing, and simplification meth-
ods in SR. Section 3 introduces the application of Locality-Sensitive
Hashing (LSH) in our simplification method. Section 4 details sim-
plifying expressions through memoization with LSH. Section 5
outlines the experimental methods, including the SR framework
used to test the method. Section 6 presents and discusses empirical
findings, focusing on the impact of our approach on solution quality,
expression size, and eliminating unnecessary operations. Finally,
Section 7 draws conclusive remarks, summarizing key contributions
and suggesting future work.

ar
X

iv
:2

40
4.

05
89

8v
1

 [
cs

.N
E

]
 8

 A
pr

 2
02

4

https://orcid.org/0002-0102-4958
https://orcid.org/0000-0002-2741-8736
https://orcid.org/0000-0002-1332-2960

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

2 RELATEDWORK

Helmuth et al. [12] proposed an automatic simplification in the
program synthesis context by randomly removing subtrees and ac-
cepting the change if that did not affect the final prediction. Burlacu
et al. [5] explored the idea of hashing an SR tree using some basic
algebraic rules for handling commutative operations, such that two
equivalent subtrees are hashed to the same value. Nguyen and Chu
explored indirect simplification through mutation [26], pruning a
population percentage by replacing subtrees with a newly small
random tree with similar semantics.

Some previous work focuses on sets of rules to perform simplifi-
cation. Kulunchakov [16] defined equivalent algebraic models as
those that produce the same outputs over a small range and by
evolving expressions with GP to use as replacements. In [9], de
França and Kronberger proposed using equality saturation, an enu-
merative simplification algorithm, to remove redundant parameters
of symbolic expressions. They noticed that overparametrization and
unnecessary complexity are predominant in current SR algorithms.
Some attempts rely on something other than the manipulation of
symbols. Bomarito et al. [4] proposed to reduce bloat by using a
custom Bayesian fitness metric with regularization.

Contrary to previous work, our approach does not rely on sets of
rules or expensive computing resources. We propose a data-driven
and computationally efficient way of inexact simplification that can
be embedded into any GP framework, being agnostic because it
only requires slicing the expressions and replacing subtrees.

3 LOCALITY-SENSITIVE HASHING

Locality-sensitive Hashing (LSH) was first introduced in [11]
as a technique designed to efficiently find approximate neighbors
in high-dimensional spaces through the usage of hash functions
that preserve local proximity [13]. The main idea is to hash input
vectors so that similar vectors are more likely to be mapped to the
same hash bucket, while very distinct vectors are less likely to do
so. Figure 1 illustrates this process.

Hash function

001100

001010

010101

010100

011101

Predictions Hash

Figure 1: Given a set of vectors (i.e. the predictions), similar
predictions are mapped to the same hash. The two high-
lighted vectors present close values in this example and are
mapped into the same hash.

Here, we employ the SimHash LSH method as a proof of con-
cept [6], as it has a straightforward implementation and requires
few lines of code to be incorporated into existing frameworks. This

results in a trade-off between computational efficiency and accu-
racy, beneficial in scenarios where exact similarity search becomes
impractical [13] due to the curse of dimensionality [7].

Given a hash size of 𝑏 bits and a set of 𝑑-dimensional data {𝑥𝑖 ∈
R𝑑 }, we first stipulate the hash size as 𝑏 bits. Then, we create a
plane P ∈ R𝑏×𝑑 where each P(𝑖, 𝑗) ∼ N(0, 1).

Whenever we want to query a data point 𝑥𝑖 , we first calculate
the matrix multiplication P · 𝑥𝑖 , resulting in the vector q ∈ R𝑏×1,
and the hash ℎ(𝑥𝑖) is calculated as

ℎ(𝑥𝑖) 𝑗 =
{
1 𝑞 𝑗 > 0
0 otherwise

This forms a bit string that is used as the key to the hash table.
The main property of this hash function is that the probability
of two hashes being equal, i.e., 𝑃𝑟 [ℎ(𝑥) == ℎ(𝑦)] = 1 − 𝜃 (𝑥,𝑦)

𝜋 ,
is proportional to their cosine similarity, and cosine similarity is
proportional to the normalized 𝑙2-euclidean distance.

Every hash table entry will store all queried objects with that
same hash value. After inserting many objects, similar objects will
be clustered around the same keys. The higher the number of bits
used to generate the hash key, the larger the number of less dense
clusters, increasing the accuracy of the similarity estimation.

4 SIMPLIFYING EXPRESSIONS BY
MEMOIZATION

The idea of inexact simplification consists of having a simplifica-
tion table where the key is the SimHash (as described in §3), and
the values are a list of expressions hashed to that particular key.

In the first step, we evaluate the expression, keeping a trace of
the evaluation at every node. At this point, every node will contain
a vector of predictions corresponding to the evaluation of that
subtree. In the next step, we traverse the tree again 1 hashing these
vectors into the binary string key. Finally, if this key contains any
element in the hash table and the closest value to this subtree is
within a threshold, we replace this subtree with the smallest tree
in this table entry. If there is no entry for this key, we create a new
entry with this subtree. Figure 2 depicts the proposed algorithm to
use LSH to simplify symbolic expressions.

We force every constant vector to have the same hash by setting
the prediction to zero if the variance of the vector is zero. This avoids
growing the hash table unnecessarily. The threshold also alleviates
the fact that nonlinear equations can have non-unique solutions,
so they are considered equivalent as long as the predictions are
within the threshold. Algorithm 1 describes the initialization of the
table, and Algorithm 2 describes the simplification process.

When simplifying the expression, we can traverse the tree either
top-down or bottom-up since we apply the replacements on the fly.
The order of traversal can generate different simplifications. The
advantage of the top-down approach is that it prunes large subtrees
first (if it finds a hash entry in the first levels). This may lead to fewer
nodes being visited as it may stop at an earlier level. On the other
hand, the bottom-up traversal may require more steps, as a node
simplified at the bottom level may trigger a new simplification at

1In practice, we only need to traverse the tree once.

Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing

Starting state, simplifying the first individual

Simplification table

00000

00100

01101

1

Simplification table

00000

00100

01101

01010

01111

 Nodes with respective hashes, based on
prediction values

2
 Tree after replacing every subtree by
 the smallest one with same hash in the

simplification table

3

01111

01010

00100

01101

0110100000

00000

01111

01010

00100

01101

 After the iteration
We learned new simplifications;

Simplification table stores equivalent trees;

Data-driven simplification can capture
relationships based on predicted values,
eliminating sub-trees with constant
prediction or operations that does not
affect the prediction.

Figure 2: In the first stage (1), we have a simplification table with only the problem variables plus the constant. Every node is
seen as the root of a subtree and can generate a prediction vector. The second stage (2) uses the predictions to get hash values
for each node, updating the simplification table. Finally, we get the simplified tree by replacing the nodes with the smallest
subtree of the same hash in the simplification table.

Algorithm 1 initialize_table

Require: Training data points (X𝑡 , y𝑡), single node constant tree
cte

Ensure: simplification table st
1: st← empty mapping of (key : value)
2: for terminal ∈ {cte} ∪ {𝑥 ∈ X𝑡 } do
3: pred← terminal.predict(X𝑡)
4: lhs.index(pred)
5: hash, 𝑑 ← lhs.query(pred)
6: st[hash] = [terminal]
7: return st

the upper level. Nevertheless, this fine-grained simplification may
lead to larger simplifications after simplifying the smaller branches.

This simplification will not always return an algebraically equiv-
alent expression but rather an approximation. By imposing a maxi-
mum distance threshold, wemitigate this issue by guaranteeing that
this procedure will replace subtrees with similar semantics. This
is an advantage for practical applications since we favor simpler
expressions at the expense of minor differences in the predictions.

5 METHODS

We implemented a standard evolutionary algorithm using the
DEAP framework [10]. The individuals are randomly initialized
using the PTC2 method [22]. Then, iteratively, we perform a fixed
number of generations of tournament selection with a tournament

Algorithm 2 hash_simplify
Require: individual ind, simplification table st, lhs instance lhs,

tolerance 𝜏
Ensure: simplified version of the individual 𝑛
1: for subtree ∈ ind do
2: pred← subtree.predict(X)
3: if Var(pred) = 0 then
4: pred← pred × 0.0
5: hash, 𝑑 ← lhs.query(pred)
6: if hash ∈ st and 𝑑 ≤ 𝜏 then
7: st[hash] ← st[hash] ∪ {subtree}
8: subtree← argmin size(tree) for tree ∈ st[hash]
9: else if hash ∉ st then
10: lhs.index(pred)
11: st[hash] = [subtree]
12: return ind

size of 3. Possible variations operators are the crossover and muta-
tions insert node, remove node, replace node, and replace subtree.

Three variants were implemented: without simplify; bottom up,
and top down. Simplification is done on the initial population and
every offspring generated by the variation operators — this way, we
guarantee that every individual is simplified at least once. The indi-
viduals also go into the nonlinear parameter optimization method
Levenberg-Marquardt [21, 25] algorithm using Scipy [28], which
was shown to be effective in previous SR algorithms [2, 14, 29].
After simplifying, we repeat the parameter optimization.

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

Our hash method is probabilistic (due to plane initialization);
thus, the hash size is set to avoid collisions. We tried to increase
the hash size by powers of two until the simplification table would
not have any collision at its initialization step. During initial exper-
iments, we found that if the initial table has a hash collision for the
features or constant, the simplification may replace features with a
constant, which is undesirable unless a feature is almost constant.

The threshold was set to a fixed value based on the smallest
train MSE error in preliminary experiments over all datasets and
set to 0.01, so it is one order of magnitude below all the train errors.
Population size and number of generations were set so most runs
would finish under a 3wall clock hours. Table 1 describes the hyper-
parameters used in the experiments.

Table 1: Symbolic regression algorithms hyper-parameters.

Parameter Value
pop size (𝑆) 80
max gen (𝐺) 200
max depth (max𝑑) 7
max size (max𝑠) 128 (27)
tolerance (𝜏) 1𝑒 − 2
hash_len 256 bits
probabilities 1/5 for each variation operator
objectives [error (MSE), size (# nodes))]
Function set [+, −, ∗, ·· , | · |, cos

−1, sin−1, tan−1,
cos, sin, tan, 𝑒 (·) , min, max,
log, log (1 + ·), exp (1 + ·),

√︁
| · |, (·)2]

We used a selection of datasets to analyze the effect of simpli-
fication throughout the evolutionary process. Table 2 shows the
name and dimensionality of the datasets used. We should note that
our approach is agnostic to GP implementation and the choice of
LSH. We have chosen the basic implementations to highlight the
effects of such simplifications.

Table 2: Dimensionality of the six datasets used to perform
an in-depth analysis.

Dataset # samples # features
Airfoil 1503 5
Concrete 1030 8
Energy Cooling 768 8
Energy Heating 768 8
Housing 506 13
Yacht 308 6

The loss function is the mean squared error (MSE) between the
predictions ŷ = 𝑓 (X) and observed values y:

MSE(ŷ, y) = 1
𝑑

𝑑∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 . (1)

As a measurement of simplicity, we also use the concept of
complexity by La Cava et al. [19], defined for a node 𝑛 with 𝑘

arguments as the recursive combination of complexity of children
with its root/head node:

𝐶 (𝑛) = 𝑐𝑛 ∗ (
𝑘∑︁

𝑎=1
𝐶 (𝑎)). (2)

By assigning high complexity values to hard-to-interpret opera-
tions, we can measure —recursively— how this propagates through
the tree. The complexity for the operators is described in Table 3.

Table 3: Complexity of each operator.

Complexity Operators

2 +, −, cte
3 ∗, max, min, (·)2, | · |
4 ·

· ,
√︁
| · |, 𝑒 (·)

5 exp (1 + ·), cos, sin, tan
6 cos−1, sin−1, tan−1
8 log (1 + ·)
9 log

Each method was run 30 times with different split seeds for each
dataset on the same hardware. The data was divided into three
partitions: 50% as train (visible to the algorithm to perform the
parameter and function optimization); 25% as validation (used to
assess the loss during the evolution, but not used during train);
and 25% test (held-out data used to obtain the final values for the
experiments). The validation split is also used to pick the final
model returned by the algorithm.

Statistical comparisons, when reported, use the non-parametric
Wilcoxon test with Holm-Bonferroni correction, and all compar-
isons made are explicitly depicted in the figures. Table 4 shows the
annotations used to show statistical significance in the plots. When
an annotation is shown as “* (ns)”, it shows a statistical significance
of one asterisk, but after correction, it becomes non-significant.

Table 4: p-value annotations and their correspondences, after
applying the alpha correction.

Annotation p-value
ns 5 × 10−2 < p ≤ 1.0
* 1 × 10−2 < p ≤ 5 × 10−2
** 1 × 10−3 < p ≤ 1 × 10−2
*** 1 × 10−4 < p ≤ 1 × 10−3
**** p ≤ 1 × 10−4

All data and the source code for implementations, experiments,
and post-processing analysis are available at https://github.com/
gAldeia/hashing-symbolic-expressions.

6 RESULTS AND DISCUSSION

In this section we analyze different aspects of the experiment’s
results. First, we verify whether the simplification accelerates the
convergence of GP to a good local optimum; next, we compare
the number of simplifications performed by each traversal strat-
egy; we show the distribution of the average size, complexity, and
goodness-of-fit of the final solutions. We also show the relative

https://github.com/gAldeia/hashing-symbolic-expressions
https://github.com/gAldeia/hashing-symbolic-expressions

Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing

difference of the solutions under these same criteria when paired
with the individual runs. Finally, we compare the differences in run-
time and explore some hand-picked simplification rules generated
throughout the runs.

6.1 Convergence
The data was split into training and validation sets. While the
model used the training partition to perform parameter and model
optimization, the validation partition was used to compute the MSE
with unseen data. Figure 3 reports the minimum validation error
during the evolution, estimated using the mean of 30 runs.

2 × 101

3 × 101

4 × 101

m
in

 v
al

 e
rro

r

Airfoil
model

Bottom Up
Top Down
Without simplify

102

6 × 101

2 × 102

Concrete

101

6 × 100

2 × 101

3 × 101

m
in

 v
al

 e
rro

r

Energy Cooling

101

Energy Heating

50 100 150 200
Generation

2 × 101

3 × 101

4 × 101

6 × 101

m
in

 v
al

 e
rro

r

Housing

50 100 150 200
Generation

100

101

102

Yacht

Figure 3: Validation error of the best individual during the
evolution. 𝑦 axis is in log-scale.

These results show that the versions with simplification often
outperform the traditional GP throughout the run, leading to a
better local optimum. The only exception is the Yacht dataset, in
which the top-down strategy performs worse than the bottom-up
and the version without simplification. In every other dataset, both
traversal strategies present similar performance.

The two traversal strategies, as conjectured before, perform a
different number of simplifications during the evolutionary process,

as we can see in Figure 4. The bottom-up strategy performs around
50% more simplifications with a little intersection in the estimated
confidence interval. We believe that the number of simplifications
appears to diminish in later generations as we effectively remove
bloated and redundant subtrees; however, we also start to have
more specialized and complex models, which are harder to simplify.

0

10

20

30

40

n
sim

pl
ifi

ca
tio

ns

Airfoil
model

Bottom Up
Top Down
Without simplify

0

5

10

15

20

25

30

35

40
Concrete

0

5

10

15

20

25

30

35

n
sim

pl
ifi

ca
tio

ns

Energy Cooling

0

5

10

15

20

25

30

35

Energy Heating

50 100 150 200
Generation

0

5

10

15

20

25

30

35

n
sim

pl
ifi

ca
tio

ns

Housing

50 100 150 200
Generation

0

10

20

30

40

50

Yacht

Figure 4: Number of simplifications performed in each gen-
eration.

6.2 Goodness-of-fit and size trade-off
At the end of the run, every algorithm picks the final model with the
best performance on the validation split. Figures 5, 6, and 7 report
the size, complexity, and MSE on the test partition, respectively.

Regarding the size, we cannot reject the null hypothesis that
there are not differences between the approaches — a counter-
intuitive result, as the simplification is expected to reduce the size
of the expressions. However, looking at the complexity boxplots, we
observe a smaller variation (for the best) using simplification strate-
gies and the rejection of the null hypothesis with a p-value between
[10−3, 10−2]. As the models are simplified during the evolution, it

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

20

30

40

50

60

70

80

siz
e

ns
ns

Airfoil

20

30

40

50

60

70
ns

ns
Concrete

20

30

40

50

60 ns
ns

Energy Cooling
Bo

tto
m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

10
20
30
40
50
60
70
80
90

siz
e

ns
ns

Energy Heating

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

20

30

40

50

60

70
ns

ns
Housing

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

10
20
30
40
50
60
70
80
90

ns
ns

Yacht

Figure 5: Final size of the solutions found by each method.
The simplification methods showed no statistically different
significance related to without any simplification.

frees up space (within the limit of maximum nodes) to accommo-
date more useful sub-expressions. As a by-product, the generated
expressions are also less complex when considering the definition
of recursive complexity. We also hypothesize that the simplifica-
tion opens up space for further improving the expressions, and the
evolutionary process efficiently takes care of that by generating
expressions of the same size but with better performance.

We find differences in complexity for the datasets Airfoil, Con-
crete, Energy Cooling, Housing, and Yacht. Even though they are
equivalent in size, the simplification process led to finding solu-
tions with better complexity without explicitly trying to minimize
it. Note that the simplified expression does not exhibit higher er-
rors than the original. Regarding the test set MSE, Airfoil, Concrete,
and Energy Cooling datasets show statistically significant improve-
ments in the bottom-up strategy. The top-down strategy shows
improvements only for Concrete.

The simplification strategy shows only small differences and no
clear better option in terms of the results, except for the number of
simplifications. The bottom-up strategy will always iterate through
the entire tree, while the top-down strategy can cut large branches
right away, ending up with a smaller number of simplifications.

We believe that Yacht was themost challenging dataset due to the
test MSE error scale shown in Fig. 7, as it is closer to the threshold
than any other algorithm. Parameter optimization, especially the
inexact simplification threshold, seems important to be adjusted
based on the error scale, and we plan to investigate it further.

0
1000
2000
3000
4000
5000
6000
7000
8000

co
m

pl
ex

ity

*
**

Airfoil

0

2000

4000

6000

8000

10000

12000
ns

*
Concrete

0

2000

4000

6000

8000

10000
**

ns
Energy Cooling

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0

2000

4000

6000

8000

co
m

pl
ex

ity

ns
ns

Energy Heating

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0

1000

2000

3000

4000

5000

6000

7000

**
**

Housing

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0

2000

4000

6000

8000

10000

12000

14000 ns
**

Yacht

Figure 6: Final complexity of the solutions. There are several
cases where simplification can improve complexity.

6.3 Relative change
Even though the differences in MSE seem modest, those are con-
sidering the mean and median of the distribution. A better way to
verify the benefits of the simplification strategy is to pair the 30
runs based on their seed and calculate the percentage of variation
between the simplification methods and without any simplification
(i.e., the baseline). This way, the variation between datasets can be
aggregated, and an overall measurement and a one-sided 𝑡-test can
be applied to verify whether the mean of the relative change is dif-
ferent from zero. Figure 8 reports the variations for the bottom-up
and top-down strategies.

A t-test for the mean of the distributions was performed for each
subfigure with 180 degrees of freedom (6 datasets and 30 runs each).

Regarding size, we see the distribution with a median of 2.43%
for bottom-up and −2.13% for top-down, but both presented a p-
value greater than 0.05, so we cannot reject the null hypothesis.
Complexity shows a median of −104.06% and −111.34%, with p-
values of 2.94 × 10−7 and 1.59 × 10−6 for bottom-up and top-down,
respectively. This indicates that for each individual run, we observe
a reduction in complexity compared to the baseline. For MSE, the
medians are −18.21% and −20.32%, and the p-values are 8.165×10−7
and 1.85 × 10−5. Again, we can reject the null hypothesis and
conclude the simplification reduces the error by 20% on average.

Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing

10

15

20

25

30

35

te
st

 m
se

ns
*

Airfoil

40

60

80

100

120

140

**
Concrete

2

4

6

8

10

12

14

16 ns
*

Energy Cooling
Bo

tto
m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

te
st

 m
se

ns
* (ns)

Energy Heating

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

10

15

20

25

30

35

40 ns
ns

Housing

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ns

ns
Yacht

Figure 7:MSE on the test partition. Simplification led to better
performance in error, with less complex models.

Bo
tto

m Up To
p

Do
wn

−100

−50

0

50

va
ria

tio
n

of
 si

ze
 (%

)

(a)

Bo
tto

m Up To
p

Do
wn

−1200

−1000

−800

−600

−400

−200

0

va
ria

tio
n

of
 c

om
pl

ex
ity

 (%
)

(b)

Bo
tto

m Up To
p

Do
wn

−200

−150

−100

−50

0

50

100

va
ria

tio
n

of
 te

st
 m

se
 (%

)

(c)

Figure 8: Percentage variation of size (8a), complexity (8b)
and MSE on test (8c) compared to without any simplification.

6.4 Analysis of hashes and individuals
We performed a single run on the Yacht dataset to obtain a few
insights on how simplification is replacing nodes. We chose it be-
cause it has no statistically significant differences in size and error
and is also low-dimensional (for the sake of the example). At the
end of the run, we had a total of 5144 hash entries created from
7324 expressions. This subsection will review some of the entries
of the simplification table. An entry is a tuple of a hash and a list of
equivalent trees. The hash will be truncated to simplify the discus-
sion, and expressions will be shown as string-formatted versions

of the expressions, ordered by smallest to largest — meaning that
any of the subtrees would be replaced by the first.

Let us take a look into the first case:

1010110111001101...
- square(x_5)
- multiply(x_5, x_5)
- absolute(square(x_5))
- maximum(square(x_5), x_0)
- maximum(add(-15.455, x_1), square(x_5))

We first notice that, without explicit rules, our method started to
replace multiply(x_5, x_5) by square(x_5), a shorter represen-
tation. It also learned that the absolute value of the square is always
positive, so absolute(square(x_5)) could also be simplified to
square(x_5). Some simplifications there are based on data: that
𝑥25 always dominates 𝑥0 in the max function. Algebraic rules would
not capture this simplification.

Some other interesting cases arise. Here, we have a permutation
of arguments on a 4-ary commutative operation, as well as the
chain of commutative operations:

1110001011011111...
- multiply(x_1, x_7, x_0, x_4)
- multiply(x_0, x_4, x_1, x_7)
- multiply(x_1, x_0, multiply(x_4, x_7))

Finally, some other cases are the simplification of redundant
operations (as in minimum(x_2, x_2)), the usage of the identity
value of an operation as argument (as in add(0.0, x_2)), and the
chaining of 𝑓 with its 𝑓 −1 (as in log(exp(x_2))):

1010101111001001...
- x_2
- absolute(x_2)
- minimum(x_2, x_2)
- minimum(x_2, x_6)
- minimum(x_2, x_5)
- add(0.0, x_2)
- log(exp(x_2))
- sqrtabs(square(x_2))
- maximum(-523.249, x_2)

Figure 9 shows the smallest expression found by the bottom-up
strategy and with GP without simplification for the Yacht dataset.

The bottom-up model obtained an MSE on the test set of 1.98
with 9 nodes, and GP without simplification obtained a test error
of 2.08 using 15 nodes. We can see more complex constructs when
not applying simplification, as well as the chaining of

√· and (·)2.
The yacht dataset has errors that are one order of magnitude

greater than the simplification threshold, and besides not show-
ing improvements in error, it had improvements in complexity. By
analyzing one single run, we proved that the benefits of our sim-
plification methods extend beyond size and error. The method was
able to minimize complexity without being explicitly told to do so.

6.5 Execution time
Figure 10 reports the execution time for each algorithm.

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

Figure 9: Smallest expression found by bottom-up (left) and
without simplification (right) for the Yacht dataset. The MSE
for each expression was 1.98 using the bottom-up simplifica-
tion and 2.08 without simplification.

We notice that the simplification methods take more time to run
than without any simplification, with statistical differences for all
but the last dataset. This happens because we perform a nonlinear
optimization twice for every individual, as they are re-optimized
after the simplification, indicating that the method would benefit
from caching recent information to avoid re-optimizing the entire
tree after every simplification.

7 CONCLUSIONS

In this paper, we propose an inexact simplification method using
LSH to learn substitution rules that are either well-known algebraic
identities or simplifications specific to the dataset domain. LSH
efficiently stores and queries expressions that behave similarly in
the phenotypical space, enabling us to apply the simplification
process for every sampled expression throughout the evolution.

With this approach, we can experimentally analyze the influence
of simplification and bloat control on the evolutionary process.
The empirical results showed that, on average, the versions with
simplification returned more accurate expressions of the same size
but with less complex construct. Comparing runs departing from
the same seed, we observed a median of 20% reduction in the mean
squared error when using simplification.

This approach has some drawbacks. For example, the hash func-
tion can only guarantee that similar expressions are clustered with
high probability. We can eventually include expressions with dis-
tinct behavior in the wrong cluster, but this should be rare. Another
issue is that the simplification is inexact, so it can perform substitu-
tions that slightly change the behavior of the function or that are
exact only on the training data.

0

2500

5000

7500

10000

12500

15000

17500

tim
e

Airfoil

Concrete

Energy Cooling

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

0

2500

5000

7500

10000

12500

15000

17500

tim
e ***

*

Energy Heating

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

Housing

Bo
tto

m Up To
p

Do
wn

W
ith

ou
t

sim
pl

ify

ns

ns

Yacht

Figure 10: Variation of execution time (in seconds) for each
method. The subplots are sharing the 𝑦 axis.

On the other hand, since this is a data-driven approach, it can
learn the rules on the fly without any need to pre-determine the
algebraic identities. It can also learn rules specific to the dataset
(e.g., 𝑥1 is always smaller than 𝑥2).

As for the next steps, we intend to improve the influence of sim-
plification by making a “warm-up” step, where random individuals
are generated and used to initialize the table; we will also evaluate
the influence of performing simplification sporadically, only for a
selection of individuals, or only at the final generation; and how
does the threshold affect the results. We will also test some other
hash functions with better guarantees than SimHash. Finally, we
will integrate this approach into a high-performance GP implemen-
tation to make it possible to run more detailed tests, also including
other simplification methods into the benchmark.

ACKNOWLEDGMENTS
W.G.L. was supported by National Institutes of Health (NIH) grant
R00-LM012926, and Patient Centered Outcomes Research Insti-
tute (PCORI) ME-2020C1D-19393. F.O.F. is supported by Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant
2021/12706-1, and Conselho Nacional de Desenvolvimento Cientí-
fico e Tecnológico (CNPq) grant 301596/2022-0. G.S.I.A. is supported
by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) finance Code 001 and grant 88887.802848/2023-00.

REFERENCES
[1] Michael Affenzeller, Stephan M Winkler, Gabriel Kronberger, Michael Kom-

menda, Bogdan Burlacu, and Stefan Wagner. 2014. Gaining deeper insights

Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing

in symbolic regression. Genetic Programming Theory and Practice XI (2014),
175–190.

[2] Guilherme Seidyo Imai Aldeia and Fabrício Olivetti de França. 2022. Interaction-
Transformation Evolutionary Algorithm with Coefficients Optimization. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion
(Boston, Massachusetts) (GECCO ’22). Association for Computing Machinery,
New York, NY, USA, 2274–2281. https://doi.org/10.1145/3520304.3533987

[3] Dimitrios Angelis, Filippos Sofos, and Theodoros E. Karakasidis. 2023. Artificial
Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives.
Archives of Computational Methods in Engineering 30, 6 (April 2023), 3845–3865.
https://doi.org/10.1007/s11831-023-09922-z

[4] G. F. Bomarito, P. E. Leser, N. C. M. Strauss, K. M. Garbrecht, and J. D. Hochhalter.
2022. Bayesian model selection for reducing bloat and overfitting in genetic
programming for symbolic regression. In Proceedings of the Genetic and Evolution-
ary Computation Conference Companion. ACM, Boston Massachusetts, 526–529.
https://doi.org/10.1145/3520304.3528899

[5] Bogdan Burlacu, Lukas Kammerer, Michael Affenzeller, and Gabriel Kronberger.
2021. Hash-Based Tree Similarity and Simplification in Genetic Programming
for Symbolic Regression. https://doi.org/10.1007/2F978-3-030-45093-9_44
arXiv:2107.10640 [cs].

[6] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[7] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquín.
2001. Searching in metric spaces. ACM Comput. Surv. 33, 3 (sep 2001), 273–321.
https://doi.org/10.1145/502807.502808

[8] F. O. de Franca and G. S. I. Aldeia. 2021. Interaction–Transformation
Evolutionary Algorithm for Symbolic Regression. Evolution-
ary Computation 29, 3 (09 2021), 367–390. https://doi.org/
10.1162/evco_a_00285 arXiv:https://direct.mit.edu/evco/article-
pdf/29/3/367/1959462/evco_a_00285.pdf

[9] Fabricio Olivetti de Franca and Gabriel Kronberger. 2023. Reducing Overpa-
rameterization of Symbolic Regression Models with Equality Saturation. In
Proceedings of the Genetic and Evolutionary Computation Conference (Lisbon,
Portugal) (GECCO ’23). Association for Computing Machinery, New York, NY,
USA, 1064–1072. https://doi.org/10.1145/3583131.3590346

[10] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made
Easy. Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. [n. d.]. Similarity Search in
High Dimensions via Hashing. ([n. d.]).

[12] Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector.
2017. Improving generalization of evolved programs through automatic simplifi-
cation. In Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, Berlin Germany, 937–944. https://doi.org/10.1145/3071178.3071330

[13] Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and
ChidambaramCrushev. 2021. A Survey on Locality Sensitive Hashing Algorithms
and their Applications. http://arxiv.org/abs/2102.08942 arXiv:2102.08942 [cs].

[14] Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affen-
zeller. 2019. Parameter identification for symbolic regression using nonlinear
least squares. Genetic Programming and Evolvable Machines 21, 3 (Dec. 2019),
471–501. https://doi.org/10.1007/s10710-019-09371-3

[15] John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4 (1994), 87–112.

[16] Kulunchakov. 2017. Creation of parametric rules to rewrite algebraic expressions
in Symbolic Regression. Machine Learning and Data Analysis 3, 1 (2017), 6–19.
https://doi.org/10.21469/22233792.3.1.01

[17] William La Cava, Kourosh Danai, Lee Spector, Paul Fleming, Alan Wright, and
Matthew Lackner. 2016. Automatic identification of wind turbine models using
evolutionary multiobjective optimization. Renewable Energy 87 (2016), 892–902.
https://doi.org/10.1016/j.renene.2015.09.068 Optimization Methods in Renewable
Energy Systems Design.

[18] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de França,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason Moore. 2021. Con-
temporary Symbolic Regression Methods and their Relative Performance. In
Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, J. Vanschoren and S. Yeung (Eds.), Vol. 1. Curran.

[19] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H.
Moore. 2019. Learning concise representations for regression by evolving net-
works of trees. http://arxiv.org/abs/1807.00981 arXiv:1807.00981 [cs].

[20] William G. La Cava, Paul C. Lee, Imran Ajmal, Xiruo Ding, Priyanka Solanki,
Jordana B. Cohen, Jason H. Moore, and Daniel S. Herman. 2023. A flexible
symbolic regression method for constructing interpretable clinical prediction
models. npj Digital Medicine 6, 1 (June 2023), 107. https://doi.org/10.1038/s41746-
023-00833-8

[21] Kenneth Levenberg. 1944. A method for the solution of certain non-linear
problems in least squares. Quarterly of applied mathematics 2, 2 (1944), 164–168.

[22] S. Luke. 2000. Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation 4, 3 (2000), 274–283. https:
//doi.org/10.1109/4235.873237

[23] Sean Luke and Liviu Panait. 2006. A Comparison of Bloat Control Methods for
Genetic Programming. Evolutionary Computation 14, 3 (Sept. 2006), 309–344.
https://doi.org/10.1162/evco.2006.14.3.309

[24] Jiayi Luo and Cindy Long Yu. 2023. The Application of Symbolic Regression
on Identifying Implied Volatility Surface. Mathematics 11, 9 (2023). https:
//doi.org/10.3390/math11092108

[25] Donald W Marquardt. 1963. An algorithm for least-squares estimation of nonlin-
ear parameters. Journal of the society for Industrial and Applied Mathematics 11,
2 (1963), 431–441.

[26] Quang Uy Nguyen and Thi Huong Chu. 2020. Semantic approximation for reduc-
ing code bloat in Genetic Programming. Swarm and Evolutionary Computation
58 (Nov. 2020), 100729. https://doi.org/10.1016/j.swevo.2020.100729

[27] Marco Virgolin and Solon P. Pissis. 2022. Symbolic Regression is NP-hard. (2022).
https://doi.org/10.48550/ARXIV.2207.01018 Publisher: arXiv Version Number: 3.

[28] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[29] Tony Worm and Kenneth Chiu. 2013. Prioritized Grammar Enumeration: Sym-
bolic Regression by Dynamic Programming. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation (Amsterdam, The Nether-
lands) (GECCO ’13). Association for Computing Machinery, New York, NY, USA,
1021–1028. https://doi.org/10.1145/2463372.2463486

https://doi.org/10.1145/3520304.3533987
https://doi.org/10.1007/s11831-023-09922-z
https://doi.org/10.1145/3520304.3528899
https://doi.org/10.1007/2F978-3-030-45093-9_44
https://doi.org/10.1145/502807.502808
https://doi.org/10.1162/evco_a_00285
https://doi.org/10.1162/evco_a_00285
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/29/3/367/1959462/evco_a_00285.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/29/3/367/1959462/evco_a_00285.pdf
https://doi.org/10.1145/3583131.3590346
https://doi.org/10.1145/3071178.3071330
http://arxiv.org/abs/2102.08942
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.21469/22233792.3.1.01
https://doi.org/10.1016/j.renene.2015.09.068
http://arxiv.org/abs/1807.00981
https://doi.org/10.1038/s41746-023-00833-8
https://doi.org/10.1038/s41746-023-00833-8
https://doi.org/10.1109/4235.873237
https://doi.org/10.1109/4235.873237
https://doi.org/10.1162/evco.2006.14.3.309
https://doi.org/10.3390/math11092108
https://doi.org/10.3390/math11092108
https://doi.org/10.1016/j.swevo.2020.100729
https://doi.org/10.48550/ARXIV.2207.01018
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2463372.2463486

	Abstract
	1 Introduction
	2 Related work
	3 Locality-Sensitive Hashing
	4 Simplifying expressions by memoization
	5 Methods
	6 Results and Discussion
	6.1 Convergence
	6.2 Goodness-of-fit and size trade-off
	6.3 Relative change
	6.4 Analysis of hashes and individuals
	6.5 Execution time

	7 Conclusions
	Acknowledgments
	References

